Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.132
Filter
1.
Int. j. morphol ; 41(4): 1191-1197, ago. 2023. ilus
Article in English | LILACS | ID: biblio-1514363

ABSTRACT

SUMMARY: The toxic effects of thioacetamide (TAA) and carbon tetrachloride on the human body are well recognized. In this study, we examined whether TAA intoxication can induce kidney leukocyte infiltration (measured as leukocyte common antigen CD45) associated with the augmentation of the reactive oxygen species (ROS)/tumor necrosis factor-alpha (TNF-α) axis, as well as biomarkers of kidney injury with and without metformin treatment. Rats were either injected with TAA (200 mg/kg; twice a week for 8 weeks) before being sacrificed after 10 weeks (experimental group) or were pre-treated with metformin (200 mg/kg) daily for two weeks prior to TAA injections and continued receiving both agents until the end of the experiment, at week 10 (protective group). Using basic histology staining, immunohistochemistry methods, and blood chemistry analysis, we observed profound kidney tissue injury such as glomerular and tubular damage in the experimental group, which were substantially ameliorated by metformin. Metformin also significantly (p0.05) increase in kidney expression of CD45 positive immunostaining cells. In conclusion, we found that TAA induces kidney injury in association with the augmentation of ROS/TNF-α axis, independent of leukocyte infiltration, which is protected by metformin.


Son bien conocidosos los efectos tóxicos de la tioacetamida (TAA) y el tetracloruro de carbono en el cuerpo humano. En este estudio, examinamos si la intoxicación por TAA puede inducir la infiltración de leucocitos renales (medida como antígeno leucocitario común CD45) asociada con el aumento de las especies reactivas de oxígeno (ROS)/factor de necrosis tumoral-alfa (TNF-α), así como biomarcadores de daño renal con y sin tratamiento con metformina. A las ratas se les inyectó TAA (200 mg/kg; dos veces por semana durante 8 semanas) antes de sacrificarlas a las 10 semanas (grupo experimental) o se les pretrató con metformina (200 mg/kg) diariamente durante dos semanas antes de las inyecciones de TAA y continuaron recibiendo ambos agentes hasta el final del experimento, en la semana 10 (grupo protector). Usando tinción histológica básica, métodos de inmunohistoquímica y análisis químico de la sangre, observamos una lesión profunda del tejido renal, como daño glomerular y tubular en el grupo experimental, que mejoraron sustancialmente con la metformina. La metformina también inhibió significativamente (p0,05) en la expresión renal de células de inmunotinción positivas para CD45. En conclusión, encontramos que el TAA induce la lesión renal en asociación con el aumento del eje ROS/TNF-α, independientemente de la infiltración de leucocitos, que está protegida por metformina.


Subject(s)
Animals , Male , Rats , Thioacetamide/toxicity , Acute Kidney Injury/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Immunohistochemistry , Biomarkers , Tumor Necrosis Factor-alpha , Reactive Oxygen Species , Leukocyte Common Antigens , Acute Kidney Injury/chemically induced , Inflammation
2.
Int. j. morphol ; 41(3): 915-925, jun. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1514287

ABSTRACT

SUMMARY: Magnolia bark extract supplementation has an anti-oxidative role in mammalians. However, its role in physiological aged-associated heart insufficiency is not known yet. Therefore, we investigated the effects of a magnolia bark complex, including magnolol and honokiol components (MAHOC), in elderly rat hearts (24-month-old aged group). One group of aged rats was supplemented with MAHOC (400 mg/kg/d, for 12 weeks) besides the standard rat diet while the second group of elderly rats and adult rats (to 6-month- old adult-group) were only fed with the standard rat diet. The morphological analysis using light microscopy has shown marked myofibrillar losses, densely localized fibroblasts, vacuolizations, infiltrated cell accumulations, and collagen fibers in the myocardium of the elderly rats compared to the adults. We also detected a markedly increased amount of degenerated cardiomyocytes including the euchromatic nucleus. The MAHOC supplementation of the elderly rats provided marked ameliorations in these abnormal morphological changes in the heart tissue. Furthermore, electrophysiological analysis of electrocardiograms (ECGs) in the supplemented group showed significant attenuations in the prolonged durations of P-waves, QRS-complexes, QT-intervals, and low heart rates compared to the unsupplemented elderly group. The biochemical analysis also showed significant attenuations in the activity of arylesterase and total antioxidant status in the myocardium of the supplemented group. We further determined significant attenuations in the activity of a mitochondrial enzyme succinate dehydrogenase, known as a source of reactive oxygen species (ROS), and the decreased level of ATP/ADP in the heart homogenates of the supplemented group. Moreover, under in vitro conditions by using an aging-mimicked cardiac cell line induced by D-galactose, we demonstrated that MAHOC treatment could provide prevention of depolarization in mitochondria membrane potential and high-level ROS production. Overall, our data presented significant myocardial ameliorations in physiological aging-associated morphological alterations parallel to the function and biochemical attenuations with MAHOC supplementation, at most, through recoveries in mitochondria.


La suplementación con extracto de corteza de magnolia tiene un papel antioxidante en los mamíferos, sin embargo, su rol en la insuficiencia cardíaca asociada al envejecimiento fisiológico aún no se conoce. Por lo anterior, investigamos los efectos de un complejo de corteza de magnolia, incluidos los componentes magnolol y honokiol (MAHOC), en corazones de ratas seniles (grupo de edad de 24 meses). La alimentación de grupo de ratas seniles se complementó con MAHOC (400 mg/kg/d, durante 12 semanas) además de la dieta estándar, mientras que el segundo grupo de ratas seniles y ratas adultas (hasta el grupo de adultos de 6 meses) solo recibió la dieta estándar para ratas. El análisis morfológico mediante microscopía óptica ha mostrado marcadas pérdidas miofibrilares, fibroblastos densamente localizados, vacuolizaciones, acumulaciones de células infiltradas y fibras de colágeno en el miocardio de las ratas seniles en comparación con las adultas. También detectamos una cantidad notablemente mayor de cardiomiocitos degradados, incluido el núcleo eucromático. La suplementación con MAHOC de las ratas seniles proporcionó mejoras marcadas en estos cambios morfológicos anormales en el tejido cardiaco. Por otra parte, el análisis de los electrocardiogramas (ECG) en el grupo suplementado mostró atenuaciones significativas en las duraciones prolongadas de las ondas P, los complejos QRS, los intervalos QT y las frecuencias cardíacas bajas, en comparación con el grupo de ratas seniles sin suplementación alimenticia. El análisis bioquímico también mostró atenuaciones significativas en la actividad de la arilesterasa y el estado antioxidante total en el miocardio del grupo suplementado. Determinamos además atenuaciones significativas en la actividad de la enzima mitocondrial succinato deshidrogenasa, conocida como fuente de especies reactivas de oxígeno (ROS), y la disminución del nivel de ATP/ADP en los homogeneizados de corazón del grupo suplementado. Además, en condiciones in vitro mediante el uso de una línea de células cardíacas, imitando el envejecimiento inducido por D- galactosa, demostramos que el tratamiento con MAHOC podría prevenir la despolarización en el potencial de membrana de las mitocondrias y la producción de ROS de alto nivel. En general, nuestros datos presentaron mejoras miocárdicas significativas en alteraciones morfológicas asociadas con el envejecimiento fisiológico paralelas a la función y atenuaciones bioquímicas con la suplementación con MAHOC, como máximo, a través de recuperaciones en las mitocondrias.


Subject(s)
Animals , Male , Rats , Biphenyl Compounds/administration & dosage , Aging , Magnolia , Heart/drug effects , Antioxidants/administration & dosage , Plant Extracts , Reactive Oxygen Species , Rats, Wistar , Lignans/administration & dosage , Heart/physiology
3.
Int. j. morphol ; 41(3): 825-830, jun. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1514291

ABSTRACT

SUMMARY: The cerebellum is a crucial area of the hindbrain that plays an essential role in balancing, excitement control, and subtle and accurate functions. Studies have shown that long-term use of D-galactose in mice, as with the symptoms of aging, causes morphological and functional disorders in the brain. This study was performed to evaluate the changes in the cerebellum cortex tissue and the measurement of reactive oxygen species (ROS) in the cerebellum following the induction of aging in mice by D-galactose. Accordingly, subjects were randomly assigned into two groups: Normal saline group and Aging group (D-galactose). To create an aging model, D- galactose, and saline solution (sodium chloride 0.9 %) were used. After completing the preparation and passage of the tissue, the cerebellum specimens were cut in 5 microns thickness and then stained with hematoxylin-eosin stain and finally examined under a Nikon microscope. Quantitative variables were analyzed by SPSS software using T-test. In the observations of cerebellum tissue samples, in the aged induced group by D-galactose, the most changes were observed in the Neuron purkinjense (Purkinje cells) layer. In the observations of the cerebellum tissue samples of aging group induced by D-galactose, the most changes were observed in the Neuron purkinjense, and the arrangement and placement of these cells were disorientated. The nucleus positioning was not central, and the Neuron purkinjense induced by aging were seen in different morphological forms. Necrosis, Chromatolysis, and Pyknosis were found. Based on the results, D-galactose (induction of aging) causes pathological changes in the cerebellar cortex, especially in the Neuron purkinjense layer.


El cerebelo es un área crucial del rombencéfalo que desempeña un papel esencial en el equilibrio, el control de la excitación y las funciones sutiles y precisas. Los estudios han demostrado que el uso a largo plazo de D-galactosa en ratones, al igual que con los síntomas del envejecimiento, provoca trastornos morfológicos y funcionales en el cerebro. Este estudio se realizó para evaluar los cambios en el tejido de la corteza del cerebelo y la medición de especies reactivas de oxígeno (ROS) en el cerebelo luego de la inducción del envejecimiento en ratones por D-galactosa. En consecuencia, los sujetos fueron asignados aleatoriamente a dos grupos: grupo de solución salina normal y grupo de envejecimiento (D-galactosa). Para crear un modelo de envejecimiento, se utilizaron D-galactosa y solución salina (cloruro de sodio al 0,9 %). Después de completar la preparación y el paso del tejido, las muestras de cerebelo se cortaron en un grosor de 5 µm y luego se tiñeron con tinción de hematoxilina-eosina y finalmente se examinaron bajo un microscopio Nikon. Las variables cuantitativas se analizaron mediante el software SPSS utilizando la prueba T. En las observaciones de muestras de tejido de cerebelo, en el grupo envejecido inducido por D-galactosa, la mayoría de los cambios se observaron en la capa de neuronas purkinjenses (células de Purkinje). En las observaciones de las muestras de tejido del cerebelo del grupo de envejecimiento inducidas por D-galactosa, la mayoría de los cambios se observaron en las neuronas purkinjenses, y la disposición y ubicación de estas células estaban desorientadas. El posicionamiento del núcleo no era central y las neuronas purkinjenses inducidas por el envejecimiento se observaban en diferentes formas morfológicas. Se encontró necrosis, cromatólisis y picnosis. Según los resultados, la D-galactosa (inducción del envejecimiento) provoca cambios patológicos en la corteza cerebelosa, especialmente en la capa de neuronas purkinjenses.


Subject(s)
Animals , Male , Mice , Aging , Cerebellum/pathology , Galactose/administration & dosage , Purkinje Cells , Cerebellum/cytology , Reactive Oxygen Species , Models, Animal , Mice, Inbred BALB C
4.
Int. j. morphol ; 41(2): 583-590, abr. 2023. ilus
Article in English | LILACS | ID: biblio-1440339

ABSTRACT

SUMMARY: Rheumatoid arthritis (RA) that affects the synovial knee joint causes swelling of the synovial membrane and tissue damage. Interleukin-17A (IL-17A) and the enzyme glycogen synthase kinase-3β (GSK3β) are involved in the pathogenesis of RA. The link between IL-17A, GSK3β, the oxidative stress, and the profibrogenic marker alpha-smooth muscle actin (α-SMA) with and without TDZD-8, GSK3β inhibitor has not been studied before. Consequently, active immunization of rats was performed to induce RA after three weeks using collagen type II (COII) injections. The treated group received daily injection of 1 mg/kg TDZD-8 for 21 days following the immunization protocol (COII+TDZD-8). Blood and synovium tissue samples were harvested at the end of the experiment. RA development was confirmed as corroborated by a substantial increase in blood levels of the highly specific autoantibody for RA, anti-citrullinated protein antibody as well as augmentation of reactive oxidative species (ROS) levels measured as lipid peroxidation. RA induction also increased synovium tissue levels of IL-17A and the profibrogenic marker, α-SMA. All these parameters seemed to be significantly (p<0.0001) ameliorated by TDZD-8. Additionally, a significant correlation between IL-17A, ROS, and α-SMA and biomarkers of RA was observed. Thus, knee joint synovium RA induction augmented IL-17A/GSK3β/ROS/α-SMA axis mediated arthritis in a rat model of RA, which was inhibited by TDZD-8.


La artritis reumatoide (AR) que afecta la articulación sinovial de la rodilla provoca inflamación de la membrana sinovial y daño tisular. La interleucina-17A (IL-17A) y la enzima glucógeno sintasa quinasa-3β (GSK3β) están involucradas en la patogenia de la AR. No se ha estudiadol vínculo entre IL-17A, GSK3β, el estrés oxidativo y el marcador profibrogénico actina de músculo liso alfa (α-SMA) con y sin inhibidor de TDZD-8, GSK3β. En consecuencia, se realizó una inmunización activa de ratas para inducir la AR después de tres semanas usando inyecciones de colágeno tipo II (COII). El grupo tratado recibió una inyección diaria de 1 µg/ kg de TDZD-8 durante 21 días siguiendo el protocolo de inmunización (COII+TDZD-8). Se recogieron muestras de sangre y tejido sinovial al final del experimento. El desarrollo de AR se confirmó como lo corroboró el aumento sustancial en los niveles sanguíneos del autoanticuerpo altamente específico para AR, el anticuerpo antiproteína citrulinada, así como el aumento de los niveles de especies oxidativas reactivas (ROS) medidos como peroxidación lipídica. La inducción de AR también aumentó los niveles de tejido sinovial de IL-17A y el marcador profibrogénico, α-SMA. Todos estos parámetros parecían mejorar significativamente (p<0,0001) con TDZD-8. Además, se observó una correlación significativa entre IL- 17A, ROS y α-SMA y biomarcadores de AR. Por lo tanto, la inducción de AR en la sinovial de la articulación de la rodilla aumentó la artritis mediada por el eje IL-17A/GSK3β/ROS/α-SMA en un modelo de rata de AR, que fue inhibida por TDZD-8.


Subject(s)
Animals , Rats , Arthritis, Rheumatoid , Thiadiazoles/administration & dosage , Fibrosis , Immunohistochemistry , Blotting, Western , Actins , Immunization , Reactive Oxygen Species , Rats, Wistar , Interleukin-17 , Collagen Type II/administration & dosage , Disease Models, Animal , Glycogen Synthase Kinase 3 beta
5.
Int. j. morphol ; 41(1): 308-318, feb. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1430503

ABSTRACT

SUMMARY: Gastrin plays a vital role in the development and progression of gastric cancer (GC). Its expression is up-regulated in GC tissues and several GC cell lines. Yet, the underlying mechanism remains to be investigated. Here, we aim to investigate the role and mechanism of gastrin in GC proliferation. Gastrin-overexpressing GC cell model was constructed using SGC7901 cells. Then the differentially expressed proteins were identified by iTRAQ analysis. Next, we use flow cytometry and immunofluorescence to study the effect of gastrin on the mitochondrial potential and mitochondria-derived ROS production. Finally, we studied the underlying mechanism of gastrin regulating mitochondrial function using Co-IP, mass spectrometry and immunofluorescence. Overexpression of gastrin promoted GC cell proliferation in vitro and in vivo. A total of 173 proteins were expressed differently between the controls and gastrin- overexpression cells and most of these proteins were involved in tumorigenesis and cell proliferation. Among them, Cox17, Cox5B and ATP5J that were all localized to the mitochondrial respiratory chain were down-regulated in gastrin-overexpression cells. Furthermore, gastrin overexpression led to mitochondrial potential decrease and mitochondria-derived ROS increase. Additionally, gastrin-induced ROS generation resulted in the inhibition of cell apoptosis via activating NF-kB, inhibiting Bax expression and promoting Bcl-2 expression. Finally, we found gastrin interacted with mitochondrial membrane protein Annexin A2 using Co-IP and mass spectrometry. Overexpr ession of gastrin inhibits GC cell apoptosis by inducing mitochondrial dysfunction through interacting with mitochondrial protein Annexin A2, then up-regulating ROS production to activate NF-kB and further leading to Bax/Bcl-2 ratio decrease.


La gastrina juega un papel vital en el desarrollo y progresión del cáncer gástrico (CG). Su expresión está regulada al alza en tejidos de CG y en varias líneas celulares de CG. Sin embargo, el mecanismo subyacente aun no se ha investigado. El objetivo de este estudio fue investigar el papel y el mecanismo de la gastrina en la proliferación de CG. El modelo de células CG que sobre expresan gastrina se construyó usando células SGC7901. Luego, las proteínas expresadas diferencialmente se identificaron mediante análisis iTRAQ. A continuación, utilizamos la citometría de flujo y la inmunofluorescencia para estudiar el efecto de la gastrina en el potencial mitocondrial y la producción de ROS derivada de las mitocondrias. Finalmente, estudiamos el mecanismo subyacente de la gastrina que regula la función mitocondrial utilizando Co-IP, espectrometría de masas e inmunofluorescencia. La sobreexpresión de gastrina promovió la proliferación de células CG in vitro e in vivo. Un total de 173 proteínas se expresaron de manera diferente entre los controles y las células con sobreexpresión de gastrina y la mayoría de estas proteínas estaban implicadas en la tumorigenesis y la proliferación celular. Entre estas, Cox17, Cox5B y ATP5J, todas localizadas en la cadena respiratoria mitocondrial, estaban reguladas a la baja en las células con sobreexpresión de gastrina. Además, la sobreexpresión de gastrina provocó una disminución del potencial mitocondrial y un aumento de las ROS derivadas de las mitocondrias. Por otra parte, la generación de ROS inducida por gastrina resultó en la inhibición de la apoptosis celular mediante la activación de NF-kB, inhibiendo la expresión de Bax y promoviendo la expresión de Bcl-2. Finalmente, encontramos que la gastrina interactuaba con la proteína de membrana mitocondrial Anexina A2 usando Co-IP y espectrometría de masas. La sobreexpresión de gastrina inhibe la apoptosis de las células CG al inducir la disfunción mitocondrial a través de la interacción con la proteína mitocondrial Anexina A2, luego regula el aumento de la producción de ROS para activar NF-kB y conduce aún más a la disminución de la relación Bax/Bcl-2.


Subject(s)
Animals , Mice , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Gastrins/metabolism , Annexin A2/metabolism , Mitochondria/pathology , Mass Spectrometry , NF-kappa B , Fluorescent Antibody Technique , Reactive Oxygen Species , Apoptosis , Cell Line, Tumor , Immunoprecipitation , Cell Proliferation , Carcinogenesis , Flow Cytometry
6.
Journal of Integrative Medicine ; (12): 62-76, 2023.
Article in English | WPRIM | ID: wpr-971641

ABSTRACT

OBJECTIVE@#The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.@*METHODS@#Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.@*RESULTS@#IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.@*CONCLUSION@#IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.


Subject(s)
Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism , Colchicine/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Mammals/metabolism
7.
International Journal of Oral Science ; (4): 10-10, 2023.
Article in English | WPRIM | ID: wpr-971599

ABSTRACT

Xenogenic organ transplantation has been considered the most promising strategy in providing possible substitutes with the physiological function of the failing organs as well as solving the problem of insufficient donor sources. However, the xenograft, suffered from immune rejection and ischemia-reperfusion injury (IRI), causes massive reactive oxygen species (ROS) expression and the subsequent cell apoptosis, leading to the xenograft failure. Our previous study found a positive role of PPAR-γ in anti-inflammation through its immunomodulation effects, which inspires us to apply PPAR-γ agonist rosiglitazone (RSG) to address survival issue of xenograft with the potential to eliminate the excessive ROS. In this study, xenogenic bioroot was constructed by wrapping the dental follicle cells (DFC) with porcine extracellular matrix (pECM). The hydrogen peroxide (H2O2)-induced DFC was pretreated with RSG to observe its protection on the damaged biological function. Immunoflourescence staining and transmission electron microscope were used to detect the intracellular ROS level. SD rat orthotopic transplantation model and superoxide dismutase 1 (SOD1) knockout mice subcutaneous transplantation model were applied to explore the regenerative outcome of the xenograft. It showed that RSG pretreatment significantly reduced the adverse effects of H2O2 on DFC with decreased intracellular ROS expression and alleviated mitochondrial damage. In vivo results confirmed RSG administration substantially enhanced the host's antioxidant capacity with reduced osteoclasts formation and increased periodontal ligament-like tissue regeneration efficiency, maximumly maintaining the xenograft function. We considered that RSG preconditioning could preserve the biological properties of the transplanted stem cells under oxidative stress (OS) microenvironment and promote organ regeneration by attenuating the inflammatory reaction and OS injury.


Subject(s)
Mice , Humans , Rats , Animals , Swine , PPAR gamma/pharmacology , Reactive Oxygen Species/pharmacology , Heterografts , Hydrogen Peroxide/pharmacology , Rats, Sprague-Dawley , Rosiglitazone/pharmacology , Oxidative Stress
8.
Journal of Southern Medical University ; (12): 199-205, 2023.
Article in Chinese | WPRIM | ID: wpr-971515

ABSTRACT

OBJECTIVE@#To study the protective effect of forsythiaside B (FB) against cerebral oxidative stress injury induced by cerebral ischemia/reperfusion (I/R) in mice and explore the underlying mechanism.@*METHODS@#Ninety C57BL/6 mice were randomized into sham-operated group, middle cerebral artery occlusion (MCAO) model group, and low-, medium and highdose (10, 20, and 40 mg/kg, respectively) FB groups. The expression levels of MDA, ROS, PCO, 8-OHdG, SOD, GSTα4, CAT and GPx in the brain tissue of the mice were detected using commercial kits, and those of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 were detected with Western blotting. Compound C (CC), an AMPK inhibitor, was used to verify the role of the AMPK pathway in mediating the therapeutic effect of FB. In another 36 C57BL/6 mice randomized into 4 sham-operated group, MCAO model group, FB (40 mg/kg) treatment group, FB+CC (10 mg/kg) treatment group, TTC staining was used to examine the volume of cerebral infarcts, and the levels of ROS and SOD in the brain were detected; the changes in the protein expressions of AMPK, P-AMPK, DAF-16, FOXO3 and P-FOXO3 in the brain tissue were detected using Western blotting.@*RESULTS@#In mice with cerebral IR injury, treatment with FB significantly reduced the levels of ROS, MDA, PCO and 8-OHdG, increased the activities of antioxidant enzymes SOD, GSTα4, CAT and GPx, and enhanced phosphorylation of AMPK and FOXO3 and DAF-16 protein expression in the brain tissue (P < 0.01). Compared with FB treatment alone, the combined treatment with FB and CC significantly reduced phosphorylation of AMPK and FOXO3, lowered expression of DAF-16 and SOD activity, and increased cerebral infarction volume and ROS level in the brain tissue of the mice (P < 0.01).@*CONCLUSION@#FB inhibits oxidative stress injury caused by cerebral I/R in mice possibly by enhancing AMPK phosphorylation, promoting the downstream DAF-16 protein expression and FOXO3 phosphorylation, increasing the expression of antioxidant enzymes, and reducing ROS level in the brain tissue.


Subject(s)
Mice , Animals , AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Reactive Oxygen Species , Mice, Inbred C57BL , Brain Ischemia , Oxidative Stress , Infarction, Middle Cerebral Artery , Reperfusion Injury , Reperfusion , Superoxide Dismutase/metabolism
9.
Journal of Zhejiang University. Science. B ; (12): 232-247, 2023.
Article in English | WPRIM | ID: wpr-971483

ABSTRACT

Drastic surges in intracellular reactive oxygen species (ROS) induce cell apoptosis, while most chemotherapy drugs lead to the accumulation of ROS. Here, we constructed an organic compound, arsenical N-‍(4-(1,3,2-dithiarsinan-2-yl)phenyl)acrylamide (AAZ2), which could prompt the ROS to trigger mitochondrial-dependent apoptosis in gastric cancer (GC). Mechanistically, by targeting pyruvate dehydrogenase kinase 1 (PDK1), AAZ2 caused metabolism alteration and the imbalance of redox homeostasis, followed by the inhibition of phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and leading to the activation of B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax)/caspase-9 (Cas9)/Cas3 cascades. Importantly, our in vivo data demonstrated that AAZ2 could inhibit the growth of GC xenograft. Overall, our data suggested that AAZ2 could contribute to metabolic abnormalities, leading to mitochondrial-dependent apoptosis by targeting PDK1 in GC.


Subject(s)
Humans , Signal Transduction , Stomach Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Cell Line, Tumor
10.
Journal of Zhejiang University. Science. B ; (12): 32-49, 2023.
Article in English | WPRIM | ID: wpr-971467

ABSTRACT

Hypoxia, as an important hallmark of the tumor microenvironment, is a major cause of oxidative stress and plays a central role in various malignant tumors, including glioblastoma. Elevated reactive oxygen species (ROS) in a hypoxic microenvironment promote glioblastoma progression; however, the underlying mechanism has not been clarified. Herein, we found that hypoxia promoted ROS production, and the proliferation, migration, and invasion of glioblastoma cells, while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine (NAC) and diphenyleneiodonium chloride (DPI). Hypoxia-induced ROS activated hypoxia-inducible factor-1α (HIF-1α) signaling, which enhanced cell migration and invasion by epithelial-mesenchymal transition (EMT). Furthermore, the induction of serine protease inhibitor family E member 1 (SERPINE1) was ROS-dependent under hypoxia, and HIF-1α mediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region, thereby facilitating glioblastoma migration and invasion. Taken together, our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway, and that targeting ROS may be a promising therapeutic strategy for glioblastoma.


Subject(s)
Humans , Cell Hypoxia , Cell Line, Tumor , Glioblastoma/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Microenvironment , Brain Neoplasms/pathology
11.
Journal of Central South University(Medical Sciences) ; (12): 24-33, 2023.
Article in English | WPRIM | ID: wpr-971367

ABSTRACT

OBJECTIVES@#Hyperhomocysteinaemia (Hcy) is an independent risk factor for cardiovascular and cerebrovascular diseases. MicroRNA (miR)-18a-5p is closely related to cardiovascular diseases. This study aims to investigate the effects of miR-18a-5p on homocysteine (Hcy)-induced myocardial cells injury.@*METHODS@#H9c2 cells were transfected with miR-18a-5p mimic/miR-18a-5p mimic negative control (NC) or combined with Hcy for intervention, and untreated cells were set as a control group. The transfection efficiency was verified by real-time RT-PCR, and cell counting kit-8 (CCK-8) assay was used to determine cell viability. Flow cytometry was used to detect apoptosis and reactive oxygen species (ROS) levels. Western blotting was performed to measure the protein levels of microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin1, p62, Bax, Bcl-2, and Notch2. Dual luciferase reporter assay was used to detect the interaction of miR-18a-5p with Notch2.@*RESULTS@#Compared with the control, treatment with Hcy or transfection with miR-18a-5p mimic alone, or combined treatment with Hcy and miR-18a-5p mimic/miR-18a-5p mimic NC significantly reduced the H9c2 cell viability, promoted apoptosis and ROS production, up-regulated the expressions of Bax and Beclin, down-regulated the expressions of Bcl-2, p62, and Notch2, and increased the ratio of LC3-II/LC3-I (all P<0.05). Compared with the combined intervention of miR-18a-5p mimic NC and Hcy group, the above indexes were more significantly changed in the combined intervention of miR-18a-5p mimic and Hcy group, and the difference between the 2 groups was statistically significant (all P<0.05). There is a targeted binding between Notch2 and miR-18a-5p.@*CONCLUSIONS@#MiR-18a-5p could induce autophagy and apoptosis via increasing ROS production in cardiomyocytes, and aggravate Hcy-induced myocardial injury. Notch2 is a target of miR-18a-5p.


Subject(s)
Rats , Animals , Apoptosis/genetics , Autophagy/genetics , bcl-2-Associated X Protein , MicroRNAs/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Reactive Oxygen Species , Myocytes, Cardiac/drug effects , Homocysteine/adverse effects , Hyperhomocysteinemia
12.
Chinese journal of integrative medicine ; (12): 127-136, 2023.
Article in English | WPRIM | ID: wpr-971337

ABSTRACT

OBJECTIVE@#To observe the effects of Guizhi Fuling Capsule (GZFLC) on myeloma cells and explore the mechanisms.@*METHODS@#MM1S and RPMI 8226 cells were co-cultured with different concentrations of serum and the cell experiments were divided into negative (10%, 20% and 40%) groups, GZFLC (10%, 20%, and 40%) groups and a control group. Cell counting kit-8 (CCK-8) assays and flow cytometry were used to detect the viability and apoptosis levels of myeloma cells. The effects on mitochondria were examined by reactive oxygen specie (ROS) and tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) assays. Western blot was used to detect the expression of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cleaved caspase-3, -9, cytochrome C (Cytc) and apoptotic protease-activating factor 1 (Apaf-1). RPMI 8226 cells (2 × 107) were subcutaneously inoculated into 48 nude mice to study the in vivo antitumor effects of GZFLC. The mice were randomly divided into four groups using a completely randomized design, the high-, medium-, or low-dose GZFLC (840, 420, or 210 mg/kg per day, respectively) or an equal volume of distilled water, administered daily for 15 days. The tumor volume changes in and survival times of the mice in the GZFLC-administered groups and a control group were observed. Cytc and Apaf-1 expression levels were detected by immunohistochemistry.@*RESULTS@#GZFLC drug serum decreased the viability and increased the apoptosis of myeloam cells (P<0.05). In addition, this drug increased the ROS levels and decreased the mitochondrial membrane potential (P<0.01). Western blot showed that the Bcl-2/Bax ratios were decreased in the GZFLC drug serum-treated groups, whereas the expression levels of cleaved caspase-3, -9, Cytc and Apaf-1 were increased (all P<0.01). Over time, the myeloma tumor volumes of the mice in the GZFLC-administered groups decreased, and survival time of the mice in the GZFLC-administered groups were longer than that of the mice in the control group. Immunohistochemical analysis of tumor tissues from the mice in the GZFLC-administered groups revealed that the Cytc and Apaf-1 expression levels were increased (P<0.05).@*CONCLUSION@#GZFLC promoted apoptosis of myeloma cells through the mitochondrial apoptosis pathway and significantly reduced the tumor volumes in mice with myeloma, which prolonged the survival times of the mice.


Subject(s)
Mice , Animals , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Wolfiporia , Multiple Myeloma/drug therapy , bcl-2-Associated X Protein/metabolism , Mice, Nude , Apoptosis , Mitochondria/metabolism
13.
Chinese journal of integrative medicine ; (12): 213-223, 2023.
Article in English | WPRIM | ID: wpr-971328

ABSTRACT

OBJECTIVE@#To evaluate the apoptosis and cycle arrest effects of Oldenlandia diffusa flavonoids on human gastric cancer cells, determine the action mechanisms in association with the mitochondrial dependent signal transduction pathway that controls production of reactive oxygen species (ROS), and evaluate the pharmacodynamics of a mouse xenotransplantation model to provide a reference for the use of flavonoids in prevention and treatment of gastric cancer.@*METHODS@#Flavonoids were extracted by an enzymatic-ultrasonic assisted method and purified with D-101 resin. Bioactive components were characterized by high-performance liquid chromatography. Cell lines MKN-45, AGS, and GES-1 were treated with different concentrations of flavonoids (64, 96, 128, 160 µg/mL). The effect of flavonoids on cell viability was evaluated by MTT method, and cell nuclear morphology was observed by Hoechst staining. The apoptosis rate and cell cycle phases were measured by flow cytometry, the production of ROS was detected by laser confocal microscope, the mitochondrial membrane potential (MMP) were observed by fluorescence microscope, and the expression of apoptotic proteins related to activation of mitochondrial pathway were measured by immunoblotting. MKN-45 cells were transplanted into BALB/c nude mice to establish a xenograft tumor model. Hematoxylin and eosin staining was used to reveal the subcutaneous tumor tissue. The tumor volume and tumor weight were measured, the expression levels of proliferation markers proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by immunohistochemistry, and the expression levels of CA72-4 were measured by enzyme linked immunosorbent assay.@*RESULTS@#Oldenlandia diffusa flavonoids inhibited proliferation of MKN-45 and AGS human gastric cancer cells, arrested the cell cycle in G1/S phase, induced accumulation of ROS in the process of apoptosis, and altered MMP. In addition, flavonoids increased Apaf-1, Cleaved-Caspase-3, and Bax, and decreased Cyclin A, Cdk2, Bcl-2, Pro-Caspase-9, and Mitochondrial Cytochrome C (P<0.05). The MKN-45 cell mouse xenotransplantation model further clarified the growth inhibitory effect of flavonoids towards tumors. The expression levels of PCNA and Ki-67 decreased in each flavonoid dose group, the expression level of CA72-4 decreased (P<0.05).@*CONCLUSION@#Flavonoids derived from Oldenlandia diffusa can inhibit proliferation and induce apoptosis of human gastric cancer cells by activating the mitochondrial controlled signal transduction pathway.


Subject(s)
Humans , Animals , Mice , Oldenlandia/metabolism , Proliferating Cell Nuclear Antigen , Stomach Neoplasms , Flavonoids/pharmacology , Reactive Oxygen Species/metabolism , Mice, Nude , Ki-67 Antigen , Cell Line, Tumor , Apoptosis , Plant Extracts/pharmacology , Caspases , Cell Proliferation
14.
Chinese Journal of Biotechnology ; (12): 1621-1632, 2023.
Article in Chinese | WPRIM | ID: wpr-981158

ABSTRACT

The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.


Subject(s)
Humans , Tigecycline/pharmacology , Escherichia coli/metabolism , Reactive Oxygen Species/therapeutic use , Plasmids , Anti-Bacterial Agents/metabolism , Escherichia coli Infections/microbiology , Bacteria/genetics , Microbial Sensitivity Tests
15.
Journal of the ASEAN Federation of Endocrine Societies ; : 6-12, 2023.
Article in English | WPRIM | ID: wpr-984341

ABSTRACT

Objective@#Physical exercise can provide many health benefits in humans. Exercise-induced reactive oxygen species (ROS) formation and its downstream signaling cascades are reported to induce mitochondrial biogenesis in exercising tissues. Selenoprotein P (SELENOP) is the antioxidant hepatokine whose hypersecretion is associated with various metabolic diseases. It was reported to impair exercise-induced reactive oxygen species signaling and inhibit subsequent mitochondrial biogenesis in mice. However, the relationship between selenoprotein P and mitochondrial dynamics in humans has not yet been reported. While reduction of plasma selenoprotein P becomes an attractive therapeutic target for metabolic diseases, the role of regular exercise in this regard is still unknown. This study aimed to analyze the influence of regular habitual exercise on plasma selenoprotein P levels and its association with leucocyte mitochondrial DNA copy number in healthy young adults.@*Methodology@#Plasma selenoprotein P levels and leucocyte mitochondrial DNA copy numbers were compared in 44 regularly exercising subjects and 44 non-exercising controls, and the correlation between the two parameters was analyzed. Plasma selenoprotein P levels were measured by Enzyme-linked Immunosorbent Assay, and leucocyte mitochondrial DNA copy numbers were measured using the qPCR method.@*Results@#The regular-exercise group had lower plasma selenoprotein P levels with higher leucocyte mitochondrial DNA copy numbers than the non-exercise group. There was a tendency of negative correlation between the two variables in our studied population.@*Conclusion@#Regular habitual exercise has a beneficial effect on reducing plasma selenoprotein P levels while raising mitochondrial DNA copy numbers.


Subject(s)
Mitochondria , Exercise , Reactive Oxygen Species , Selenoprotein P
16.
Chinese Medical Journal ; (24): 922-932, 2023.
Article in English | WPRIM | ID: wpr-980843

ABSTRACT

BACKGROUND@#Pancreatic β-cells elevate insulin production and secretion through a compensatory mechanism to override insulin resistance under metabolic stress conditions. Deficits in β-cell compensatory capacity result in hyperglycemia and type 2 diabetes (T2D). However, the mechanism in the regulation of β-cell compensative capacity remains elusive. Nuclear factor-Y (NF-Y) is critical for pancreatic islets' homeostasis under physiological conditions, but its role in β-cell compensatory response to insulin resistance in obesity is unclear.@*METHODS@#In this study, using obese ( ob/ob ) mice with an absence of NF-Y subunit A (NF-YA) in β-cells ( ob , Nf-ya βKO) as well as rat insulinoma cell line (INS1)-based models, we determined whether NF-Y-mediated apoptosis makes an essential contribution to β-cell compensation upon metabolic stress.@*RESULTS@#Obese animals had markedly augmented NF-Y expression in pancreatic islets. Deletion of β-cell Nf-ya in obese mice worsened glucose intolerance and resulted in β-cell dysfunction, which was attributable to augmented β-cell apoptosis and reactive oxygen species (ROS). Furthermore, primary pancreatic islets from Nf-ya βKO mice were sensitive to palmitate-induced β-cell apoptosis due to mitochondrial impairment and the attenuated antioxidant response, which resulted in the aggravation of phosphorylated c-Jun N-terminal kinase (JNK) and cleaved caspase-3. These detrimental effects were completely relieved by ROS scavenger. Ultimately, forced overexpression of NF-Y in INS1 β-cell line could rescue palmitate-induced β-cell apoptosis, dysfunction, and mitochondrial impairment.@*CONCLUSION@#Pancreatic NF-Y might be an essential regulator of β-cell compensation under metabolic stress.


Subject(s)
Rats , Mice , Animals , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Insulin , Insulin-Secreting Cells/metabolism , Apoptosis , Stress, Physiological , Transcription Factors/metabolism , Palmitates/pharmacology , Obesity/metabolism
17.
Chinese Acupuncture & Moxibustion ; (12): 454-460, 2023.
Article in Chinese | WPRIM | ID: wpr-980744

ABSTRACT

OBJECTIVE@#To explore the possible mechanism of acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) on premature ovarian insufficiency (POI) from the perspective of oxidative stress.@*METHODS@#Sixty female SD rats were randomly divided into a blank group, a model group, a sham acupuncture group, a medication group, and an acupuncture group, 12 rats in each group. Except the blank group, the rats in the remaining groups were intraperitoneally injected with cyclophosphamide to establish the POI model. After the model was successfully established, the rats in the acupuncture group were treated with acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28), with a depth of about 12 mm, and the needle was retained for 30 min; the acupuncture was given once a day, for a total of 4 weeks. The rats in the sham acupuncture group were treated with blunt-head needle to tap the skin surface of "Zhibian" (BL 54), without penetrating the skin, once a day for 4 weeks. The rats in the medication group were treated with estradiol valerate by gastric gavage for 4 weeks. After the intervention, the level of reactive oxygen species (ROS) in the ovarian tissue was detected by fluorescence probe; the expression of c-Jun N-terminal kinase (JNK), forkhead box O1 (FoxO1), tumor suppressor gene protein 53 (p53) and p53 up-regulated modulator of apoptosis (Puma) mRNA and protein in ovarian tissue were detected by real-time fluorescence quantitative PCR and Western blot.@*RESULTS@#Compared with the blank group, the level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the model group were increased (P<0.01). Compared with the model group, the level of ROS and the expression of p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the sham acupuncture group were slightly reduced, but the difference was not statistically significant (P>0.05). The level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the acupuncture group and the medication group were reduced (P<0.01).@*CONCLUSION@#Acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) could improve the level of oxidative stress, down-regulate the expression of apoptosis-related factors JNK, FoxO1, p53 and Puma induced by oxidative stress, and inhibit the premature failure of ovarian reserve function caused by apoptosis of ovarian granulosa cells in POI rats.


Subject(s)
Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Reactive Oxygen Species , Tumor Suppressor Protein p53/genetics , Apoptosis Regulatory Proteins , Acupuncture Therapy , Primary Ovarian Insufficiency/therapy , Apoptosis , RNA, Messenger , Oxidative Stress , Acupuncture Points
18.
Journal of Southern Medical University ; (12): 552-559, 2023.
Article in Chinese | WPRIM | ID: wpr-986961

ABSTRACT

OBJECTIVE@#To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.@*METHODS@#The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.@*RESULTS@#The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).@*CONCLUSION@#Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.


Subject(s)
Humans , Synoviocytes , Berberine/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hydrogen Peroxide/metabolism , Sincalide/metabolism , Cell Proliferation , Arthritis, Rheumatoid/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Fibroblasts , Autophagy , Cells, Cultured
19.
Journal of Southern Medical University ; (12): 537-543, 2023.
Article in Chinese | WPRIM | ID: wpr-986959

ABSTRACT

OBJECTIVE@#To investigate the expression of microRNA miR-431-5p in gastric cancer (GC) tissues and its effects on apoptosis and mitochondrial function in GC cells.@*METHODS@#The expression level of miR-431-5p in 50 clinical samples of GC tissues and paired adjacent tissues was detected using real-time fluorescence quantitative PCR, and its correlation with the clinicopathological features of the patients was analyzed. A cultured human GC cell line (MKN-45 cells) were transfected with a miR-431-5p mimic or a negative control sequence, and the cell proliferation, apoptosis, mitochondrial number, mitochondrial potential, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production and adenosine triphosphate (ATP) content were detected using CCK-8 assay, flow cytometry, fluorescent probe label, or ATP detection kit. The changes in the expression levels of the apoptotic proteins in the cells were detected with Western blotting.@*RESULTS@#The expression level of miR-431-5p was significantly lower in GC tissues than in the adjacent tissues (P < 0.001) and was significantly correlated with tumor differentiation (P=0.0227), T stage (P=0.0184), N stage (P=0.0005), TNM stage (P=0.0414) and vascular invasion (P=0.0107). In MKN-45 cells, overexpression of miR-431-5p obviously inhibited cell proliferation and induced cell apoptosis, causing also mitochondrial function impairment as shown by reduced mitochondrial number, lowered mitochondrial potential, increased mPTP opening, increased ROS production and reduced ATP content. Overexpression of miR-431-5p significantly downregulated the expression of Bcl-2 and increased the expressions of pro-apoptotic proteins p53, Bcl-2 and cleaved caspase-3 protein.@*CONCLUSION@#The expression of miR-431-5p is down-regulated in GC, which results in mitochondrial function impairment and promotes cell apoptosis by activating the Bax/Bcl-2/caspase3 signaling pathway, suggesting the potential role of miR-431-5p in targeted therapy for GC.


Subject(s)
Humans , Apoptosis/genetics , bcl-2-Associated X Protein , Caspase 3 , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore , Reactive Oxygen Species , Stomach Neoplasms/pathology
20.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 681-689, 2023.
Article in Chinese | WPRIM | ID: wpr-986945

ABSTRACT

Objective: To investigate whether tanshinone ⅡA can protect the apoptosis of mice cochlear pericytes induced by high glucose and its specific protective mechanism, so as to provide experimental evidence for the prevention and treatment of diabetic hearing loss. Methods: C57BL/6J male mice were used to prepare type 2 diabetes model, which were divided into normal (NG) group, diabetic (DM) group, diabetic+tanshinone ⅡA (HG+tanshinone ⅡA) group and tanshinone ⅡA group. Each group had 10 animals. Primary cochlear pericytes were divided into NG group, HG group (high glucose 35 mmol/L), HG+tanshinone ⅡA (1, 3, 5 μmol/L) group, HG+Tanshinone ⅡA+LY294002 (PI3K/AKT pathway inhibitor) group, LY294002 group, tanshinone ⅡA group and DMSO group. Auditory brainstem response (ABR) was used to measure hearing threshold. Evans blue was used to detect the permeability of blood labyrinth barrier in each group. TBA methods were used to detect oxidative stress levels in various organs of mice. Morphological changes of stria vascularis were observed by hematoxylin-eosin staining (HE). Evans blue was used to detect the vascular labyrinth barrier permeability in cochlea. The expression of apoptosis protein in stria vascularis pericytes was observed by immunofluorescence. Pericytes apoptosis rate was observed by flow cytometry. DCFH-DA was combined with flow cytometry to detect intracellular ROS content, and Western blot was used to detect the expression of apoptotic proteins (Cleaved-caspase3, Bax), anti-apoptotic proteins (BCL-2) and pathway proteins (PI3K, p-PI3K, AKT, p-AKT). SPSS software was used for statistical analysis. Independent sample t test was performed, and P<0.05 was considered statistically significant. Results: Animal experiments: Tanshinone ⅡA decreased the hearing threshold of DM group [(35.0±3.5) dB SPL vs. (55.3±8.1) dB SPL] (t=4.899, P<0.01), decreased the oxidative stress level in cochlea (t=4.384, P<0.05), improved the structure disorder, atrophy of cochlea vascular lines, vacuole increased phenomenon. Tanshinone ⅡA alleviated the increased permeability of the blood labyrinth barrier [Evans blue leakage (6.84±0.27) AU vs. (8.59±0.85) AU] in the cochlea of DM mice (t=2.770, P<0.05), reversed the apoptotic protein: Caspase3 (t=4.956, P<0.01) and Bax (t=4.388, P<0.05) in cochlear vascularis. Cell experiments: Tanshinone ⅡA decreased intracellular ROS content in a concentration-dependent way (t=3.569, P<0.05; t=4.772, P<0.01; t=7.494, P<0.01); Tanshinone ⅡA decreased apoptosis rate and apoptotic protein, and increased the expression of anti-apoptotic protein, p-PI3K/PI3K and p-AKT/AKT in concentration-dependent manner (all P values<0.05); LY294002 reversed the protective effect of tanshinone ⅡA on pericytes apoptosis (all P values<0.05). Conclusion: Tanshinone ⅡA can inhibit the apoptosis of cochlear pericytes induced by high glucose by reducing oxidative stress level and activating PI3K/AKT signaling pathway under high glucose environment, thus playing a protective role in diabetic hearing loss.


Subject(s)
Animals , Male , Mice , Apoptosis , bcl-2-Associated X Protein , Diabetes Mellitus, Type 2 , Evans Blue , Glucose , Hearing Loss , Mice, Inbred C57BL , Pericytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL